Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Clin Invest ; 134(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38329810

RESUMO

Neutrophil (PMN) tissue accumulation is an established feature of ulcerative colitis (UC) lesions and colorectal cancer (CRC). To assess the PMN phenotypic and functional diversification during the transition from inflammatory ulceration to CRC we analyzed the transcriptomic landscape of blood and tissue PMNs. Transcriptional programs effectively separated PMNs based on their proximity to peripheral blood, inflamed colon, and tumors. In silico pathway overrepresentation analysis, protein-network mapping, gene signature identification, and gene-ontology scoring revealed unique enrichment of angiogenic and vasculature development pathways in tumor-associated neutrophils (TANs). Functional studies utilizing ex vivo cultures, colitis-induced murine CRC, and patient-derived xenograft models demonstrated a critical role for TANs in promoting tumor vascularization. Spp1 (OPN) and Mmp14 (MT1-MMP) were identified by unbiased -omics and mechanistic studies to be highly induced in TANs, acting to critically regulate endothelial cell chemotaxis and branching. TCGA data set and clinical specimens confirmed enrichment of SPP1 and MMP14 in high-grade CRC but not in patients with UC. Pharmacological inhibition of TAN trafficking or MMP14 activity effectively reduced tumor vascular density, leading to CRC regression. Our findings demonstrate a niche-directed PMN functional specialization and identify TAN contributions to tumor vascularization, delineating what we believe to be a new therapeutic framework for CRC treatment focused on TAN angiogenic properties.


Assuntos
Colite Ulcerativa , Colite , Neoplasias Colorretais , Humanos , Camundongos , Animais , Neutrófilos/patologia , Metaloproteinase 14 da Matriz , Colite Ulcerativa/metabolismo , Neovascularização Patológica/metabolismo , Colite/metabolismo , Neoplasias Colorretais/patologia
2.
Am J Pathol ; 194(5): 628-636, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38309429

RESUMO

Neutrophils are an important cell type often considered the body's first responders to inflammatory insult or damage. They are recruited to the tissue of the lungs in patients with inflammatory airspace diseases and have unique and complex functions that range from helpful to harmful. The uniqueness of these functions is due to the heterogeneity of the inflammatory cascade and retention in the vasculature. Neutrophils are known to marginate, or remain stagnant, in the lungs even in nondisease conditions. This review discusses the ways in which the recruitment, presence, and function of neutrophils in the airspace of the lungs are unique from those of other tissues, and the complex effects of neutrophils on pathogenesis. Inflammatory mediators produced by neutrophils, such as neutrophil elastase, proresolving mediators, and neutrophil extracellular traps, dramatically affect the outcomes of patients with disease of the lungs.


Assuntos
Armadilhas Extracelulares , Neutrófilos , Humanos , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Pulmão , Armadilhas Extracelulares/metabolismo
3.
J Clin Invest ; 134(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38015629

RESUMO

Vascular aging affects multiple organ systems, including the brain, where it can lead to vascular dementia. However, a concrete understanding of how aging specifically affects the brain vasculature, along with molecular readouts, remains vastly incomplete. Here, we demonstrate that aging is associated with a marked decline in Notch3 signaling in both murine and human brain vessels. To clarify the consequences of Notch3 loss in the brain vasculature, we used single-cell transcriptomics and found that Notch3 inactivation alters regulation of calcium and contractile function and promotes a notable increase in extracellular matrix. These alterations adversely impact vascular reactivity, manifesting as dilation, tortuosity, microaneurysms, and decreased cerebral blood flow, as observed by MRI. Combined, these vascular impairments hinder glymphatic flow and result in buildup of glycosaminoglycans within the brain parenchyma. Remarkably, this phenomenon mirrors a key pathological feature found in brains of patients with CADASIL, a hereditary vascular dementia associated with NOTCH3 missense mutations. Additionally, single-cell RNA sequencing of the neuronal compartment in aging Notch3-null mice unveiled patterns reminiscent of those observed in neurodegenerative diseases. These findings offer direct evidence that age-related NOTCH3 deficiencies trigger a progressive decline in vascular function, subsequently affecting glymphatic flow and culminating in neurodegeneration.


Assuntos
Encéfalo , Demência Vascular , Receptor Notch3 , Animais , Humanos , Camundongos , Encéfalo/metabolismo , CADASIL/genética , CADASIL/patologia , Demência Vascular/metabolismo , Camundongos Knockout , Mutação , Receptor Notch3/genética
4.
Immunity ; 56(10): 2311-2324.e6, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37643615

RESUMO

Engagement of platelet endothelial cell adhesion molecule 1 (PECAM, PECAM-1, CD31) on the leukocyte pseudopod with PECAM at the endothelial cell border initiates transendothelial migration (TEM, diapedesis). We show, using fluorescence lifetime imaging microscopy (FLIM), that physical traction on endothelial PECAM during TEM initiated the endothelial signaling pathway. In this role, endothelial PECAM acted as part of a mechanotransduction complex with VE-cadherin and vascular endothelial growth factor receptor 2 (VEGFR2), and this predicted that VEGFR2 was required for efficient TEM. We show that TEM required both VEGFR2 and the ability of its Y1175 to be phosphorylated, but not VEGF or VEGFR2 endogenous kinase activity. Using inducible endothelial-specific VEGFR2-deficient mice, we show in three mouse models of inflammation that the absence of endothelial VEGFR2 significantly (by ≥75%) reduced neutrophil extravasation by selectively blocking diapedesis. These findings provide a more complete understanding of the process of transmigration and identify several potential anti-inflammatory targets.


Assuntos
Migração Transendotelial e Transepitelial , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Animais , Camundongos , Adesão Celular , Movimento Celular , Endotélio Vascular , Mecanotransdução Celular , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
5.
J Clin Invest ; 133(15)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37261911

RESUMO

Neutrophil (PMN) mobilization to sites of insult is critical for host defense and requires transendothelial migration (TEM). TEM involves several well-studied sequential adhesive interactions with vascular endothelial cells (ECs); however, what initiates or terminates this process is not well-understood. Here, we describe what we believe to be a new mechanism where vessel-associated macrophages through localized interactions primed EC responses to form ICAM-1 "hot spots" to support PMN TEM. Using real-time intravital microscopy of LPS-inflamed intestines in CX3CR1-EGFP macrophage-reporter mice, complemented by whole-mount tissue imaging and flow cytometry, we found that macrophage vessel association is critical for the initiation of PMN-EC adhesive interactions, PMN TEM, and subsequent accumulation in the intestinal mucosa. Anti-colony stimulating factor 1 receptor Ab-mediated macrophage depletion in the lamina propria and at the vessel wall resulted in elimination of ICAM-1 hot spots impeding PMN-EC interactions and TEM. Mechanistically, the use of human clinical specimens, TNF-α-KO macrophage chimeras, TNF-α/TNF receptor (TNF-α/TNFR) neutralization, and multicellular macrophage-EC-PMN cocultures revealed that macrophage-derived TNF-α and EC TNFR2 axis mediated this regulatory mechanism and was required for PMN TEM. As such, our findings identified clinically relevant mechanisms by which macrophages regulate PMN trafficking in inflamed mucosa.


Assuntos
Células Endoteliais , Molécula 1 de Adesão Intercelular , Humanos , Camundongos , Animais , Células Endoteliais/metabolismo , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Adesão Celular/fisiologia , Infiltração de Neutrófilos , Células Cultivadas , Mucosa Intestinal/metabolismo , Neutrófilos/metabolismo , Macrófagos/metabolismo , Endotélio Vascular/metabolismo
6.
Curr Protoc ; 3(4): e739, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37078364

RESUMO

Inflammation is the body's response to injury and harmful stimuli and contributes to a range of infectious and noninfectious diseases. Inflammation occurs through a series of well-defined leukocyte-endothelial cell interactions, including rolling, activation, adhesion, transmigration, and subsequent migration through the extracellular matrix. Being able to visualize the stages of inflammation is important for a better understanding of its role in diseases processes. Detailed in this article are protocols for imaging immune cell infiltration and transendothelial migration in vascular tissue beds, including those in the mouse ear, cremaster muscle, brain, lung, and retina. Also described are protocols for inducing inflammation and quantifying leukocytes with FIJI imaging software. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Induction of croton oil dermatitis Alternate Protocol 1: Induction of croton oil dermatitis using genetically fluorescent mice Basic Protocol 2: Intravital microscopy of the mouse cremaster muscle Support Protocol: Making a silicone stage Basic Protocol 3: Wide-field microscopy of the mouse brain Basic Protocol 4: Imaging the lungs (ex vivo) Alternate Protocol 2: Inflating the lungs without tracheostomy Basic Protocol 5: Inducing, imaging, and quantifying infiltration of leukocytes in mouse retina.


Assuntos
Dermatite , Migração Transendotelial e Transepitelial , Camundongos , Animais , Óleo de Cróton , Leucócitos/fisiologia , Inflamação/diagnóstico por imagem
7.
Am J Pathol ; 192(11): 1619-1632, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35952762

RESUMO

The infiltration of polymorphonuclear leukocytes (PMNs) in ischemia-reperfusion injury (I/RI) has been implicated as a critical component of inflammatory damage following ischemic stroke. However, successful blockade of PMN transendothelial migration (TEM) in preclinical studies has not translated to meaningful clinical outcomes. To investigate this further, leukocyte infiltration patterns were quantified, and these patterns were modulated by blocking platelet endothelial cell adhesion molecule-1 (PECAM), a key regulator of TEM. LysM-eGFP mice and microscopy were used to visualize all myeloid leukocyte recruitment following ischemia/reperfusion. Visual examination showed heterogeneous leukocyte distribution across the infarct at both 24 and 72 hours after I/RI. A semiautomated process was designed to precisely map PMN position across brain sections. Treatment with PECAM function-blocking antibodies did not significantly affect total leukocyte recruitment but did alter their distribution, with more observed at the cortex at both early and later time points (24 hours: 89% PECAM blocked vs. 72% control; 72 hours: 69% PECAM blocked vs. 51% control). This correlated with a decrease in infarct volume. These findings suggest that TEM, in the setting of I/RI in the cerebrovasculature, occurs primarily at the cortical surface. The reduction of stroke size with PECAM blockade suggests that infiltrating PMNs may exacerbate I/RI and indicate the potential therapeutic benefit of regulating the timing and pattern of leukocyte infiltration after stroke.


Assuntos
AVC Isquêmico , Animais , Camundongos , Adesão Celular , Endotélio Vascular/metabolismo , Infarto , Infiltração de Neutrófilos , Neutrófilos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo
8.
J Immunol ; 209(5): 1001-1012, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35914838

RESUMO

CD99-like 2 (CD99L2 [L2]) is a highly glycosylated 52-kDa type 1 membrane protein that is important for leukocyte transendothelial migration (TEM) in mice. Inhibiting L2 using function-blocking Ab significantly reduces the recruitment of leukocytes to sites of inflammation in vivo. Similarly, L2 knockout mice have an inherent defect in leukocyte transmigration into sites of inflammation. However, the role of L2 in inflammation has only been studied in mice. Furthermore, the mechanism by which it regulates TEM is not known. To study the relevance to human inflammation, we studied the role of L2 on primary human cells in vitro. Our data show that like PECAM and CD99, human L2 is constitutively expressed at the borders of endothelial cells and on the surface of leukocytes. Inhibiting L2 using Ab blockade or genetic knockdown significantly reduces transmigration of human neutrophils and monocytes across endothelial cells. Furthermore, our data also show that L2 regulates a specific, sequential step of TEM between PECAM and CD99, rather than operating in parallel or redundantly with these molecules. Similar to PECAM and CD99, L2 promotes transmigration by recruiting the lateral border recycling compartment to sites of TEM, specifically downstream of PECAM initiation. Collectively, our data identify a novel functional role for human L2 in TEM and elucidate a mechanism that is distinct from PECAM and CD99.


Assuntos
Células Endoteliais , Leucócitos , Antígeno 12E7 , Animais , Movimento Celular , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Humanos , Inflamação/metabolismo , Leucócitos/metabolismo , Camundongos , Monócitos/metabolismo , Neutrófilos/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo
9.
Geroscience ; 44(3): 1241-1254, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35538386

RESUMO

BACKGROUND: Persistent viral RNA shedding of SARS-CoV-2 following COVID-19 has increasingly been recognized, with limited understanding of its implications on outcomes in hospitalized COVID-19 patients. METHODS: We retrospectively assessed for persistent viral shedding across Northwestern Medicine Healthcare (NMHC) patients between March and August 2020. We assessed for predictors of persistent viral shedding, in-hospital delirium, and six-month mortality using binary logistic regression. RESULTS: Of the 2,518 hospitalized patients with an RT-PCR-confirmed diagnosis of COVID-19, 959 underwent repeat SARS-CoV-2 RT-PCR at least fourteen days from initial positive testing. Of those, 405 (42.2%) patients were found to have persistent viral shedding. Persistent viral shedding was associated with male sex, increased BMI, diabetes mellitus, chronic kidney disease, and exposure to corticosteroids during initial COVID-19 hospitalization. Persistent viral shedding was independently associated with incidence of in-hospital delirium after adjusting for factors including severity of respiratory dysfunction (OR 2.45; 95% CI 1.75, 3.45). Even after adjusting for age, severity of respiratory dysfunction, and occurrence of in-hospital delirium, persistent viral shedding remained significantly associated with increased six-month mortality (OR 2.43; 95% CI 1.42, 4.29). CONCLUSIONS: Persistent viral shedding occurs frequently in hospitalized COVID-19 patients and is associated with in-hospital delirium and increased six-month mortality.


Assuntos
COVID-19 , Delírio , Delírio/epidemiologia , Humanos , Incidência , Masculino , RNA Viral/análise , Estudos Retrospectivos , SARS-CoV-2 , Eliminação de Partículas Virais
10.
Am J Pathol ; 192(2): 295-307, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34767810

RESUMO

Peripheral monocyte-derived CX3C chemokine receptor 1 positive (CX3CR1+) cells play important roles in tissue homeostasis and gut repopulation. Increasing evidence also supports their role in immune repopulation of the brain parenchyma in response to systemic inflammation. Adoptive bone marrow transfer from CX3CR1 fluorescence reporter mice and high-resolution confocal microscopy was used to assess the time course of CX3CR1+ cell repopulation of steady-state and dextran sodium sulfate (DSS)-inflamed small intestine/colon and the brain over 4 weeks after irradiation. CX3CR1+ cell colonization and morphologic polarization into fully ramified cells occurred more rapidly in the small intestine than in the colon. For both organs, the crypt/mucosa was more densely populated than the serosa/muscularis layer, indicating preferential temporal and spatial occupancy. Repopulation of the brain was delayed compared with that of gut tissue, consistent with the immune privilege of this organ. However, DSS-induced colon injury accelerated the repopulation. Expression analyses confirmed increased chemokine levels and macrophage colonization within the small intestine/colon and the brain by DSS-induced injury. Early increases of transmembrane protein 119 and ionized calcium binding adaptor molecule 1 expression within the brain after colon injury suggest immune-priming effect of brain resident microglia in response to systemic inflammation. These findings identify temporal differences in immune repopulation of the gut and brain in response to inflammation and show that gut inflammation can impact immune responses within the brain.


Assuntos
Lesões Encefálicas/imunologia , Encéfalo/imunologia , Receptor 1 de Quimiocina CX3C/imunologia , Colite/imunologia , Mucosa Intestinal/imunologia , Monócitos/imunologia , Lesões Experimentais por Radiação/metabolismo , Animais , Encéfalo/patologia , Lesões Encefálicas/genética , Lesões Encefálicas/patologia , Receptor 1 de Quimiocina CX3C/genética , Colite/induzido quimicamente , Colite/genética , Colite/patologia , Sulfato de Dextrana/toxicidade , Mucosa Intestinal/fisiologia , Camundongos , Camundongos Transgênicos , Monócitos/patologia , Lesões Experimentais por Radiação/genética , Lesões Experimentais por Radiação/patologia
11.
J Exp Med ; 218(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34325467

RESUMO

Hypoxia-inducible factors (HIFs) are activated in parenchymal cells in response to low oxygen and as such have been proposed as therapeutic targets during hypoxic insult, including myocardial infarction (MI). HIFs are also activated within macrophages, which orchestrate the tissue repair response. Although isoform-specific therapeutics are in development for cardiac ischemic injury, surprisingly, the unique role of myeloid HIFs, and particularly HIF-2α, is unknown. Using a murine model of myocardial infarction and mice with conditional genetic loss and gain of function, we uncovered unique proinflammatory roles for myeloid cell expression of HIF-1α and HIF-2α during MI. We found that HIF-2α suppressed anti-inflammatory macrophage mitochondrial metabolism, while HIF-1α promoted cleavage of cardioprotective MerTK through glycolytic reprogramming of macrophages. Unexpectedly, combinatorial loss of both myeloid HIF-1α and HIF-2α was catastrophic and led to macrophage necroptosis, impaired fibrogenesis, and cardiac rupture. These findings support a strategy for selective inhibition of macrophage HIF isoforms and promotion of anti-inflammatory mitochondrial metabolism during ischemic tissue repair.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células Mieloides/metabolismo , Idoso , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Cardiomiopatias/fisiopatologia , Modelos Animais de Doenças , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Células Mieloides/patologia , Infarto do Miocárdio/fisiopatologia , Isquemia Miocárdica/fisiopatologia , Miocardite/metabolismo , Miocardite/patologia
12.
Front Immunol ; 12: 654259, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959129

RESUMO

Neutrophil (PMN) recruitment to sites of insult is critical for host defense, however excessive PMN activity and tissue accumulation can lead to exacerbated inflammation and injury. Myeloperoxidase (MPO) is a PMN azurophilic granule enzyme, which together with H2O2, forms a powerful antimicrobial system designed to kill ingested bacteria. Intriguingly, in addition to intracellular killing of invading microorganisms and extracellular tissue damage due generation of ROS, soluble MPO has been directly implicated in modulating cellular responses and tissue homeostasis. In the current work, we used several models of inflammation, murine and human PMNs and state-of-the-art intravital microscopy to examine the effect of MPO on PMN migration and tissue accumulation. We found that in the absence of functional MPO (MPO knockout, KO mice) inflammatory PMN tissue accumulation was significantly enhanced. We determined that the elevated numbers of PMNs in MPO knockout mice was not due to enhanced viability, but due to increased migratory ability. Acute PMN migration in models of zymosan-induced peritonitis or ligated intestinal loops induced by intraluminal administration of PMN-chemokine CXCL1 was increased over 2-fold in MPO KO compared to wild type (WT) mice. Using real-time intravital imaging of inflamed mouse cremaster muscle and ex vivo PMN co-culture with inflamed endothelial cells (ECs) we demonstrate that elevated migration of MPO KO mice was due to enhanced adhesive interactions. In contrast, addition of soluble recombinant MPO both in vivo and ex vivo diminished PMN adhesion and migration. Although MPO has been previously suggested to bind CD11b, we found no significant difference in CD11b expression in either resting or activated PMNs and further showed that the MPO binding to the PMN surface is not specific to CD11b. As such, our data identify MPO as a novel regulator of PMN trafficking in inflammation.


Assuntos
Quimiotaxia de Leucócito/imunologia , Inflamação/etiologia , Inflamação/metabolismo , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Peroxidase/metabolismo , Animais , Quimiotaxia de Leucócito/genética , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Expressão Gênica , Inflamação/patologia , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos/genética , Peroxidase/genética
13.
J Exp Med ; 218(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-32970800

RESUMO

Endothelial cell calcium flux is critical for leukocyte transendothelial migration (TEM), which in turn is essential for the inflammatory response. Intravital microscopy of endothelial cell calcium dynamics reveals that calcium increases locally and transiently around the transmigration pore during TEM. Endothelial calmodulin (CaM), a key calcium signaling protein, interacts with the IQ domain of IQGAP1, which is localized to endothelial junctions and is required for TEM. In the presence of calcium, CaM binds endothelial calcium/calmodulin kinase IIδ (CaMKIIδ). Disrupting the function of CaM or CaMKII with small-molecule inhibitors, expression of a CaMKII inhibitory peptide, or expression of dominant negative CaMKIIδ significantly reduces TEM by interfering with the delivery of the lateral border recycling compartment (LBRC) to the site of TEM. Endothelial CaMKII is also required for TEM in vivo as shown in two independent mouse models. These findings highlight novel roles for endothelial CaM and CaMKIIδ in transducing the spatiotemporally restricted calcium signaling required for TEM.


Assuntos
Sinalização do Cálcio , Células Endoteliais/metabolismo , Leucócitos/metabolismo , Migração Transendotelial e Transepitelial , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Camundongos , Camundongos Transgênicos
14.
Am J Pathol ; 190(3): 535-542, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31866349

RESUMO

Calcium is an essential second messenger in endothelial cells and plays a pivotal role in regulating a number of physiologic processes, including cell migration, angiogenesis, barrier function, and inflammation. An increase in intracellular Ca2+ concentration can trigger a number of diverse signaling pathways under both physiologic and pathologic conditions. In this review, we discuss how calcium signaling pathways in endothelial cells play an essential role in affecting barrier function and facilitating inflammation. Inflammatory mediators, such as thrombin and histamine, increase intracellular calcium levels. This calcium influx causes adherens junction disassembly and cytoskeletal rearrangements to facilitate endothelial cell retraction and increased permeability. During inflammation endothelial cell calcium entry and the calcium-related signaling events also help facilitate several leukocyte-endothelial cell interactions, such as leukocyte rolling, adhesion, and ultimately transendothelial migration.


Assuntos
Sinalização do Cálcio , Células Endoteliais/fisiologia , Inflamação , Trombina/metabolismo , Adesão Celular , Comunicação Celular , Movimento Celular , Citoesqueleto/metabolismo , Células Endoteliais/patologia , Humanos , Migração e Rolagem de Leucócitos , Migração Transendotelial e Transepitelial
15.
Biomed Opt Express ; 10(10): 5235-5250, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31646044

RESUMO

We longitudinally imaged both the superficial and deep cortical microvascular networks in brains of healthy mice and in a mouse model of stroke in vivo using visible-light optical coherence tomography (vis-OCT). We surgically implanted a microprism in mouse brains sealed by a chronic cranial window. The microprism enabled vis-OCT to image the entire depth of the mouse cortex. Following microprism implantation, we imaged the mice for 28 days and found that that it took around 15 days for both the superficial and deep cortical microvessels to recover from the implantation surgery. After the brains recovered, we introduced ischemic strokes by transient middle cerebral artery occlusion (tMCAO). We monitored the strokes for up to 60 days and observed different microvascular responses to tMCAO at different cortical depths in both the acute and chronic phases of the stroke. This work demonstrates that the combined microprism and cranial window is well-suited for longitudinal investigation of cortical microvascular disorders using vis-OCT.

16.
J Exp Med ; 216(11): 2582-2601, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31395618

RESUMO

Transendothelial migration (TEM) of leukocytes across the endothelium is critical for inflammation. In the endothelium, TEM requires the coordination of membrane movements and cytoskeletal interactions, including, prominently, recruitment of the lateral border recycling compartment (LBRC). The scaffold protein IQGAP1 was recently identified in a screen for LBRC-interacting proteins. Knockdown of endothelial IQGAP1 disrupted the directed movement of the LBRC and substantially reduced leukocyte TEM. Expression of truncated IQGAP1 constructs demonstrated that the calponin homology domain is required for IQGAP1 localization to endothelial borders and that the IQ domain, on the same IQGAP1 polypeptide, is required for its function in TEM. This is the first reported function of IQGAP1 requiring two domains to be present on the same polypeptide. Additionally, we show for the first time that IQGAP1 in the endothelium is required for efficient TEM in vivo. These findings reveal a novel function for IQGAP1 and demonstrate that IQGAP1 in endothelial cells facilitates TEM by directing the LBRC to the site of TEM.


Assuntos
Células Endoteliais/metabolismo , Leucócitos/metabolismo , Migração Transendotelial e Transepitelial , Proteínas Ativadoras de ras GTPase/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Antígenos CD , Caderinas , Células Cultivadas , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência , Microtúbulos/metabolismo , Transporte Proteico , Interferência de RNA , Proteínas Ativadoras de ras GTPase/genética
17.
Mucosal Immunol ; 11(6): 1571-1581, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30104624

RESUMO

Neutrophil (PMN) infiltration of the intestinal mucosa is a hallmark of gastrointestinal inflammation, with significant implications for host defense, injury and repair. However, phenotypic and mechanistic aspects of PMN recruitment in inflamed intestines have not been explored in vivo. Using novel epithelial/PMN fluorescence reporter mice, advanced intravital imaging and 3D reconstruction analysis, we mapped the microvasculature architecture across the intestinal layers and determined that in response to Salmonella/endotoxin-induced inflammation, PMN transendothelial migration (TEM) was restricted to submucosal vessels. PMN TEM was not observed in villus or crypt vessels, proximal to the epithelium that underlies the intestinal lumen, and was partially dependent on (C-X-C motif) ligands 1 (CXCL1) and 2 (CXCL2) expression, which was found to be elevated in the submucosa layer. Restricted PMN extravasation at the submucosa and subsequent PMN interstitial migration may serve as a novel regulatory step of PMN effector function and recruitment to the luminal space in inflamed intestines.


Assuntos
Inflamação/imunologia , Mucosa Intestinal/patologia , Intestinos/imunologia , Microvasos/patologia , Neutrófilos/patologia , Infecções por Salmonella/imunologia , Salmonella typhimurium/imunologia , Animais , Células Cultivadas , Quimiocina CXCL1/metabolismo , Quimiocina CXCL2/metabolismo , Proteínas de Fluorescência Verde/genética , Humanos , Imageamento Tridimensional , Intestinos/irrigação sanguínea , Microscopia Intravital , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infiltração de Neutrófilos , Neutrófilos/imunologia , Migração Transendotelial e Transepitelial
18.
PLoS Biol ; 16(5): e2003864, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29782498

RESUMO

Tether proteins attach the endoplasmic reticulum (ER) to other cellular membranes, thereby creating contact sites that are proposed to form platforms for regulating lipid homeostasis and facilitating non-vesicular lipid exchange. Sterols are synthesized in the ER and transported by non-vesicular mechanisms to the plasma membrane (PM), where they represent almost half of all PM lipids and contribute critically to the barrier function of the PM. To determine whether contact sites are important for both sterol exchange between the ER and PM and intermembrane regulation of lipid metabolism, we generated Δ-super-tether (Δ-s-tether) yeast cells that lack six previously identified tethering proteins (yeast extended synatotagmin [E-Syt], vesicle-associated membrane protein [VAMP]-associated protein [VAP], and TMEM16-anoctamin homologues) as well as the presumptive tether Ice2. Despite the lack of ER-PM contacts in these cells, ER-PM sterol exchange is robust, indicating that the sterol transport machinery is either absent from or not uniquely located at contact sites. Unexpectedly, we found that the transport of exogenously supplied sterol to the ER occurs more slowly in Δ-s-tether cells than in wild-type (WT) cells. We pinpointed this defect to changes in sterol organization and transbilayer movement within the PM bilayer caused by phospholipid dysregulation, evinced by changes in the abundance and organization of PM lipids. Indeed, deletion of either OSH4, which encodes a sterol/phosphatidylinositol-4-phosphate (PI4P) exchange protein, or SAC1, which encodes a PI4P phosphatase, caused synthetic lethality in Δ-s-tether cells due to disruptions in redundant PI4P and phospholipid regulatory pathways. The growth defect of Δ-s-tether cells was rescued with an artificial "ER-PM staple," a tether assembled from unrelated non-yeast protein domains, indicating that endogenous tether proteins have nonspecific bridging functions. Finally, we discovered that sterols play a role in regulating ER-PM contact site formation. In sterol-depleted cells, levels of the yeast E-Syt tether Tcb3 were induced and ER-PM contact increased dramatically. These results support a model in which ER-PM contact sites provide a nexus for coordinating the complex interrelationship between sterols, sphingolipids, and phospholipids that maintain PM composition and integrity.


Assuntos
Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Fosfolipídeos/metabolismo , Esteróis/metabolismo , Lipídeos/biossíntese , Proteínas de Membrana/metabolismo , Receptores de Esteroides/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Leveduras
19.
Traffic ; 19(3): 198-214, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29282820

RESUMO

Transbilayer lipid asymmetry is a fundamental characteristic of the eukaryotic cell plasma membrane (PM). While PM phospholipid asymmetry is well documented, the transbilayer distribution of PM sterols such as mammalian cholesterol and yeast ergosterol is not reliably known. We now report that sterols are asymmetrically distributed across the yeast PM, with the majority (~80%) located in the cytoplasmic leaflet. By exploiting the sterol-auxotrophic hem1Δ yeast strain we obtained cells in which endogenous ergosterol was quantitatively replaced with dehydroergosterol (DHE), a closely related fluorescent sterol that functionally and accurately substitutes for ergosterol in vivo. Using fluorescence spectrophotometry and microscopy we found that <20% of DHE fluorescence was quenched when the DHE-containing cells were exposed to membrane-impermeant collisional quenchers (spin-labeled phosphatidylcholine and trinitrobenzene sulfonic acid). Efficient quenching was seen only after the cells were disrupted by glass-bead lysis or repeated freeze-thaw to allow quenchers access to the cell interior. The extent of quenching was unaffected by treatments that deplete cellular ATP levels, collapse the PM electrochemical gradient or affect the actin cytoskeleton. However, alterations in PM phospholipid asymmetry in cells lacking phospholipid flippases resulted in a more symmetric transbilayer distribution of sterol. Similarly, an increase in the quenchable pool of DHE was observed when PM sphingolipid levels were reduced by treating cells with myriocin. We deduce that sterols comprise up to ~45% of all inner leaflet lipids in the PM, a result that necessitates revision of current models of the architecture of the PM lipid bilayer.


Assuntos
Membrana Celular/metabolismo , Ergosterol/metabolismo , 5-Aminolevulinato Sintetase/genética , 5-Aminolevulinato Sintetase/metabolismo , Membrana Celular/ultraestrutura , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/metabolismo
20.
Am J Physiol Heart Circ Physiol ; 311(3): H621-32, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27422987

RESUMO

Leukocyte transendothelial migration (TEM) is an essential component of the inflammatory response. In vitro studies with human cells have demonstrated that platelet/endothelial cell adhesion molecule (PECAM) functions upstream of CD99 during TEM; however, results in vivo with mice have been apparently contradictory. In this study we use four-dimensional (4D) intravital microscopy to demonstrate that the site and order of function of PECAM and CD99 in vivo are dependent on the strain of mice. In FVB/n mice, PECAM functions upstream of CD99, as in human cells in vitro, and blocking antibodies against either molecule arrest neutrophils before they traverse the endothelium. However, in C57BL/6 mice, PECAM and CD99 appear to function at a different step, as the same antibodies arrest leukocyte migration through the endothelial basement membrane. These results are the first direct comparison of PECAM and CD99 function in different murine strains as well as the first demonstration of the sequential function of PECAM and CD99 in vivo.


Assuntos
Antígeno 12E7/metabolismo , Músculos Abdominais/metabolismo , Dermatite de Contato/metabolismo , Leucócitos/patologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Migração Transendotelial e Transepitelial , Antígeno 12E7/antagonistas & inibidores , Músculos Abdominais/patologia , Animais , Anticorpos Bloqueadores/farmacologia , Membrana Basal , Adesão Celular , Óleo de Cróton/efeitos adversos , Dermatite de Contato/etiologia , Dermatite de Contato/patologia , Fármacos Dermatológicos/efeitos adversos , Citometria de Fluxo , Microscopia Intravital , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Neutrófilos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA